範例參考區


此為範例參考區,使用者可參考下表中的範例簡介並點選進入各範例的詳細說明來決定最適合你的資料分析方法。

說明 當我們欲了解變數間是否有因果關係時,必須先區分出因與果的對象,這個因在統計分析裡面稱為自變數,指的是會影響或干擾其他變數結果的變數,自變數原文為independent variable或是predictor,故也稱為獨立變數或是預測變數;而統計分析裡的果則是稱為依變數,會受到外在其它變數影響的一方即是依變數,而依變數為dependent variable或是response variable,稱為相依變數或反應變數。當變數只有A與B兩個時,我們可探討A影響B或是B影響A,但是當變數個數達三個以上時,此時變數間的關係變得較為複雜。假設有A、B與C三個變數,首先將依變數定義出來,若此處A為依變數,則我們可進一步探討B與C對於A的影響,與雙變數分析II區相同的,在進行分析前,須先了解依變數的類型方可選擇適當的統計方法,若依變數為連續型變數,適合以多元(複)迴歸模式(multiple regression model)來分析;若依變數為類別型變數,則適合以多元邏輯斯迴歸(multiple logistic regression)分析。
輔助範例
範例內容依變數種類建議分析方法
D-1疫苗安全的研究Q1. 類別變數Q1. 多元邏輯斯迴歸分析(multiple logistic regression analysis)
D-2BMI對第II型糖尿病的影響Q1. 類別變數
Q2. 連續變數
Q1. 多元邏輯斯迴歸分析(multiple logistic regression analysis)
Q2. 多元迴歸分析(multiple regression analysis)

範例D-1:疫苗安全的研究 疾病對於幼兒而言是非常危險的,在幼兒出生以後都需要定時的接受許多的疫苗接種,疫苗接種的好處是可以使幼兒的體內產生抗體,當受到相同疾病的病毒侵襲時可以免於感染。幼兒出生後需要接種的有卡介苗、B型肝炎疫苗、五合一疫苗(註一)、水痘疫苗等非常多種的疾病疫苗,雖然疫苗可使幼兒體內產生抗體,但是卻可能引起幼兒發燒,導致其他的危險。因此因疫苗的接種而引起發燒症狀的機率一直為政府衛生單位所重視,某衛生單位為了解五合一疫苗的引發發燒症狀的機率以及,紀錄一批到衛生所接種疫苗後24小時內是否有發燒症狀及幼兒的性別與體重資料於表中,共有70位幼兒。

表:幼兒接種疫苗記錄
幼兒編號 1 2 3 4 ... 68 69 70
是否發燒(註二) 1 0 0 1 ... 0 0 1
性別(註三) 0 0 1 1 ... 1 0 1
體重 6.546.658.237.71...8.368.596.91
註一:五合一疫苗包括白喉、破傷風、非細胞性百日咳、B型嗜血桿菌及小兒麻痺。
註二:0表未發燒、1表發燒。
註三:0表女性、1表男性。

Q1:衛生單位想了解幼兒發燒與否是否受到幼兒性別差異與體重高低的影響?是否男(或女)性比較可能發燒?是否體重較輕(或重)的嬰兒比較可能發燒?或是男性且體重較輕的嬰兒比較可能發燒?
問題解析:此時討論影響幼兒發燒的原因,影響的原因有性別及體重的差異,想了解此兩種因素的改變是否會增加發燒的可能,且影響的程度有多大,可探討問題"性別差異與體重差異是否會影響發燒的可能?"。
統計方法:此問題中有三個變數,分別是發燒情況、性別與體重(三個變數,探討因果關係,建議選擇多變數分析)。此範例中幼兒性別差異(因)與體重高低(因)是否會因為接受疫苗接種而產生幼兒發燒(果)的情況,故自變數有二個為幼兒性別差異與體重高低,依變數是發燒情況。依變數為類別變數,可採用分析方法:多元邏輯斯迴歸分析(multiple logistic regression analysis),分析"性別差異與體重差異是否會影響發燒的可能?"。

回範例參考區

範例D-2:BMI對第II型糖尿病的影響 現代人的生活富裕,大眾的飲食習慣已經與以前差異很大,大魚大肉與暴飲暴食再加上外國高熱量食物的引進,在這麼多的不健康食物與不良的飲食習慣下,隨之而來的是造成許多肥胖的身材,不管是兒童或是年輕人或是中老年人,肥胖所占的人數的比例已經較以前大大的提升。肥胖從醫學的觀點出發涉及到健康的問題,許多的疾病已經證明與肥胖有很大的關係,在肥胖者體內過多的脂肪組織可能是導致疾病的危險因子,據研究肥胖與多種疾病有關,如糖尿病、心臟病、脂肪肝與中風等。在測量是否為肥胖的工具中,最常利用的方法是身體質量指數(BMI),此方法考慮每個人體型的差異,將身高與體重同時納入衡量,適當的BMI介於18.5至24之間,當BMI高於27則有輕度肥胖的可能,當BMI大於35則是重度肥胖了,國防部規定BMI大於33即可免役。由此可知BMI的正確性相當高。在與肥胖有關的疾病中,第二型糖尿病算是比較常見的,此種糖尿病的盛行率隨著地區的差異而有所不同,即是此種並可能受到環境或是種族等因素影響,但是隨著肥胖人口的增加,各地方的盛行率也同時增加,因此普遍認為肥胖是依個重要的因素。某醫院研究單位為了解該市的居民身體健康狀況並了解肥胖與糖尿病的關係,特別為該市天居民男女各40人進行健康檢查,其中男女各有部份人員患有第二型糖尿病,測得資料如表中,共有性別、年齡、BMI、收縮壓及是否患有糖尿病。

表:受測市民健康資料
市民編號 1 2 3 ... 79 80
性別(註一) 1 0 0 ... 1 0
年齡 45 52 50 ... 38 33
BMI 19.926.523.5 ...24.620.1
糖尿病患病情況(註二) 011...10
註一:0表女性、1表男性。
註二:0表未患病、1表患病。

Q1:BMI指數在某種程度上常常能代表身體健康的程度,過高的BMI指數代表過胖的身體,而肥胖的人往往有很高的機會患有糖尿病;年齡較大者由於身體的老化進而新陳代謝功能變差,往往也是容易換有疾病的高危險群,依據以往研究結果顯示,此兩因素與糖尿病有一定程度的關係,除了此兩因素外,研究單位想了解性別是否也會與糖尿病有關聯?
問題解析:此處欲討論影響糖尿病的因素,且討論因素共有三個,分別是BMI指數、年齡與性別,想了解此三個因素對於糖尿病的影響,是否會增加罹患糖尿病的可能,可探討問題"BMI指數、年齡及性別是否會影響糖尿病患病可能?"。
統計方法:此問題中有四個變數,分別是BMI指數、年齡、性別及糖尿病患病情況(四個變數,探討因果關係,建議選擇多變數分析)。此範例中想了解BMI指數、年齡與性別(因)等不同條件是否就有可能罹患糖尿病(果),故自變數有三個為BMI指數、年齡與性別,依變數是糖尿病患病情況。依變數為類別變數,可採用分析方法:多元邏輯斯迴歸分析(multiple logistic regression analysis),分析"BMI指數、年齡及性別是否會影響糖尿病患病可能?"。

Q2: 一個人的BMI指數是由身高與體重換算而來的,但是對於不同性別與年齡,是否會使得BMI指數有所不同呢?研究單位想了解性別與年齡對於BMI指數的影響?是否有關聯呢?
問題解析:此處欲討論影BMI指數的的因素,且討論因素共有兩個,分別是年齡與性別,想了解此三個因素對於BMI指數的影響,可探討問題"年齡與性別會影響BMI指數嗎?"。
統計方法:此問題中有三個變數,分別是性別、年齡及BMI指數(三個變數,探討因果關係,建議選擇多變數分析)。此問題中想了解性別與年齡(因)等不同條件是否對BMI指數(果)有影響,故自變數有兩個為性別與年齡,依變數是BMI指數。依變數為連續變數,可採用分析方法:多元迴歸分析(multiple regression analysis),分析"年齡與性別影響BMI指數嗎?"。

回範例參考區